
ar
X

iv
:1

21
1.

17
03

v2
 [

cs
.G

T
]

 3
0

M
ar

 2
01

3

The Complexity of Optimal Mechanism Design

Constantinos Daskalakis∗

EECS, MIT

costis@mit.edu

Alan Deckelbaum†

Math, MIT

deckel@mit.edu

Christos Tzamos‡

EECS, MIT

tzamos@mit.edu

April 2, 2013

Abstract

Myerson’s seminal work provides a computationally efficient revenue-optimal auction for
selling one item to multiple bidders [17]. Generalizing this work to selling multiple items at
once has been a central question in economics and algorithmic game theory, but its complexity
has remained poorly understood. We answer this question by showing that a revenue-optimal
auction in multi-item settings cannot be found and implemented computationally efficiently,
unless ZPP ⊇ P#P. This is true even for a single additive bidder whose values for the items are
independently distributed on two rational numbers with rational probabilities. Our result is very
general: we show that it is hard to compute any encoding of an optimal auction of any format
(direct or indirect, truthful or non-truthful) that can be implemented in expected polynomial
time. In particular, under well-believed complexity-theoretic assumptions, revenue-optimization
in very simple multi-item settings can only be tractably approximated.

We note that our hardness result applies to randomized mechanisms in a very simple setting,
and is not an artifact of introducing combinatorial structure to the problem by allowing cor-
relation among item values, introducing combinatorial valuations, or requiring the mechanism
to be deterministic (whose structure is readily combinatorial). Our proof is enabled by a flow-
interpretation of the solutions of an exponential-size linear program for revenue maximization
with an additional supermodularity constraint.

∗Supported by a Sloan Foundation Fellowship, a Microsoft Research Faculty Fellowship, and NSF Award CCF-
0953960 (CAREER) and CCF-1101491.

†Supported by Fannie and John Hertz Foundation Daniel Stroock Fellowship and NSF Award CCF-1101491.
‡Supported by NSF Award CCF- 1101491.

http://arxiv.org/abs/1211.1703v2

1 Introduction

Consider the problem facing a seller who is looking to sell items to bidders given distributional
information about their valuations, i.e. how much they value each subset of the items. This problem,
called the optimal mechanism design problem (explained formally in Section 1.1), has been a central
problem in economics for a few decades and has recently received considerable attention in computer
science as well. The special case of a single item is well-understood: in his seminal paper [17],
Myerson showed that the optimal single-item auction takes a simple form—when the values of the
bidders for the item are independent. Moreover, if every bidder’s value distribution is supported on
rational numbers with rational probabilities, the optimal auction can be computed and implemented
computationally efficiently—see e.g. [6]. On the other hand, the general (multi-item) problem has
been open since Myerson’s work and has remained poorly understood despite significant research
effort devoted to its solution—see [16] and its references for work on this problem by economists.

More recently, the problem received considerable attention in computer science where algorith-
mic ideas have provided insights into its structure and computational complexity. Results have
come in two flavors: approximations [9, 10, 4, 1, 15, 13, 14, 8], guaranteeing a constant fraction of
the optimal revenue, and exact solutions [12, 6, 2, 7], guaranteeing full revenue extraction. These
results provide comprehensive solutions to the problem, even under very general allocation con-
straints [7, 8], but do not pin down its computational complexity. In particular, all known exact
mechanisms can be computed and implemented in time polynomial in the total number of valu-
ations a bidder may have—i.e. the size of the support of each bidder’s valuation-distribution; so
they are computationally efficient only when the valuation distributions are provided explicitly in
the specification of the problem, by listing their support together with the probability assigned
to each valuation in the support. But this is not always the computationally meaningful way to
describe the problem. The most trivial setting where this issue arises is that of a single additive
bidder1 whose values for the items are independent of support two. In this case, the bidder may
have one of 2n possible valuations, where n is the number of items, and explicitly describing her
valuation-distribution would require Ω(2n) vectors and probabilities. However, a mechanism with
complexity polynomial in Ω(2n) is clearly inefficient, and one would like to pay complexity poly-
nomial in the distribution’s natural description complexity, i.e. the bits required to specify the
distribution’s n marginals over the items. Such efficient mechanisms have not been discovered,
except in item-symmetric settings [12].

To sum up, previous work has provided solutions to the optimal mechanism design problem in
broad multi-item settings [6, 2, 7], but these solutions fall short of characterizing the computational
complexity of the problem, and so do existing lower bound approaches [5, 19, 13, 11] (see broader
discussion for the latter in Section 1.3). In this paper, we answer this question by showing that
optimal mechanism design is computationally intractable, even in the most basic settings.

Theorem 1. There is no expected polynomial-time solution to the optimal mechanism design prob-
lem (formal definition in Section 1.1) unless ZPP ⊇ P

#P.
Moreover, it is #P-hard to determine whether every optimal mechanism assigns a specific item

to a specific type of bidder with probability 0 or with probability 1 (at the Bayesian Nash equilibrium
of the mechanism), given the promise that one of these two cases holds simultaneously for all optimal
mechanisms.

The above are true even in the case of selling multiple items to a single additive, quasi-linear2

1An additive bidder is described by a value-vector (v1, . . . , vn), where vi is her value for item i ∈ [n], so that her
value for a subset S of items is

∑
i∈S

vi.
2A bidder is quasi-linear if her utility for purchasing a subset S of the items at price pS is vS − pS, where vS is

1

bidder, whose values for the items are independently distributed on two rational numbers with ra-
tional probabilities.

The contribution of our result is two-fold. First, it gives a definitive proof that approximation
is necessary for revenue optimization beyond Myerson’s single-item setting. Approximation has
been heavily used in algorithmic work on the problem, but there has been no justification for
its use, at least in simple settings that don’t induce combinatorial structure in the valuations of
the bidders (sub-modular, OXS, etc.), or the allocation constraints of the setting. Second, our
result represents advancement in our techniques for showing lower bounds for optimal mechanism
design. Despite evidence that the structure of the optimal mechanism is complicated even in
simple settings (see Section 1.2), previous work has not been able to harness this evidence to
obtain computational hardness results. Our approach, using duality theory and flows to narrow
into a family of instances for which this is possible, provides a new paradigm for proving hardness
results in optimal mechanism design and, we expect, outside of algorithmic game theory. Again
we note that complexity creeps in not because we assume correlations in the item values (which
can easily introduce combinatorial dependencies among them), or because we restrict attention
to deterministic mechanisms (whose structure is readily combinatorial), but because our approach
reveals combinatorial structure in the optimal mechanism, which can be exploited for a reduction.
See further discussion in Sections 1.2 and 1.3.

1.1 The Optimal Mechanism Design Problem

To explain our result, we describe the Optimal Mechanism Design (OMD) problem more formally.
As we are aiming for a broad lower bound we take the most general approach on the definition of the
problem placing no constraints on the form of the sought after mechanism, or how this mechanism is
meant to be described. Hence, our lower bounds apply to computing direct revelation mechanisms
as well as any conceivable type of mechanism.

Input: This consists of the names of the items and the bidders, the allocation constraints of
the setting (specifying, e.g., that an item may be allocated to at most one bidder, etc.), and a
probability distribution on the valuations, or types, of the bidders. The type of a bidder incorporates
information about how much she values every subset of the items, as well as what utility she derives
for receiving a subset at a particular price. For example, the type of an additive quasi-linear bidder
can be encapsulated in a vector of values (one value per item). We won’t make any assumptions
about how the allocation constraints are specified. In general, these could either be hard-wired to
a family of instances of the OMD problem, or provided as part of the input in a computationally
meaningful way. For the purposes of our intractability results, the allocation constraints will be
trivial, enforcing that we can only allocate at most one copy of each item, and we restrict our
attention to instances with precisely these allocation constraints. As far as the type distribution is
concerned, we restrict our attention to additive quasi-linear bidders with independent values for the
items. So, for our purposes, the type distribution of a bidder is specified by specifying its marginal
on each item. We assume that each marginal is given explicitly, as a list of the possible values for
the item as well as the probabilities assigned to each value.3

Desired Output: The goal is to compute a (possibly randomized) auction that optimizes, over all
possible auctions, the expected revenue of the auctioneer, i.e. the expected sum of prices paid by the

her value for S.
3There are of course other ways to describe these marginals. For example, we may only have sample access to

them, or we may be given a circuit that takes as input a value and outputs the probability assigned to that value. As
our goal is to prove lower bounds, the assumption that the marginals are provided explicitly in the input only makes
the lower bounds stronger.

2

bidders at the Bayes Nash equilibrium of the auction,4 where the expectation is taken with respect
to the bidders’ types, the randomness in their strategies (if any) at the Bayes Nash equilibrium, as
well as any internal randomness that the auction uses.

We note that there is a large universe of possible auctions with widely varying formats, e.g. sealed
envelope auctions, dynamic auctions, all-pay auctions, etc. And there could be different auctions
with optimal expected revenue. As our goal is to prove robust intractability results for OMD, we
take a general approach imposing no restrictions on the format of the auction, and no restrictions
on the way the auction is encoded. The encoding should specify in a computationally meaningful
way what actions are available to the bidders, how the items are allocated depending on the actions
taken by the bidders, and what prices are charged to them, where both allocation and prices could
be outputs of a randomized function of the bidders’ actions. In particular, a computationally
efficient solution to OMD induces the following:

Auction Computation&Simulation: A computationally efficient solution to a family I
of OMD problems induces a pair of algorithms C and S satisfying the following:

1. [auction computation] C : I → E is an expected polynomial-time algorithm mapping
instances I ∈ I of the OMD problem to auction encodings C(I) ∈ E ; e.g. C(I) may be
“second price auction”, or “English auction with reserve price $5”, etc.

2. [auction simulation] S is an expected polynomial-time algorithm mapping instances I ∈
I of the OMD problem, encodings C(I) of the optimal auction for I, and realized types
t1, . . . , tm for the bidders, to a sample from the (possibly randomized) allocation and
price rule of the auction encoded by C(I), at the Bayes Nash equilibrium of the auction
when the types of the bidders are t1, . . . , tm.

Clearly, Property 1 holds because computing the optimal auction encoding C(I) for an instance I
is assumed to be efficient. But why does there exist a simulator S as in Property 2? Well, when
the auction C(I) is executed, then somebody (either the auctioneer, or the bidders, or both) need
to do some computation: the bidders need to decide how to play the auction (i.e. what actions
from among the available ones to use), and then the auctioneer needs to allocate the items and
charge the bidders. In the special case of a direct Bayesian Incentive Compatible mechanism,5 the
bidders need not do any computation, as it is a Bayes Nash equilibrium strategy for each of them
to truthfully report their type to the auctioneer. In this case, all the computation must be done
by the auctioneer who needs to sample from the (possibly randomized) allocation and price rule of
the mechanism given the bidders’ reported types. In general (possibly non-direct, or multi-stage)
mechanisms, both bidders and auctioneer may need to do some computation: the bidders need to
compute their Bayes Nash equilibrium strategies given their types, and the auctioneer needs to
sample from the (possibly random) allocation and price rule of the mechanism given the bidders’
strategies. These computations must all be computationally efficient, as otherwise the execution of
the auction C(I) would not be computationally efficient. Hence an efficient solution must induce
an efficient simulator S. Notice, in particular, that S requires that the combined computation

4Informally Bayesian Nash equilibrium is the extension of Nash equilibrium to incomplete-information games, i.e.
games where the utilities of players are sampled from a probability distribution. We won’t provide a formal definition
as it is quite involved and is actually not required for our lower bounds, which focus on the single-bidder case.

For the purposes of the problem definition though, we note that, if an auction has multiple Bayesian Nash equilibria,
its revenue is not well-defined as it may depend on what Bayesian Nash equilibrium the bidders end up playing. So
we would like to avoid such auctions given the uncertainty about their revenue. Again this complication won’t be
relevant for our results as all auctions we construct in our hardness proofs will have a unique Bayes Nash equilibrium.

5A mechanism is direct if the only available actions to a bidder is to report a type in the support of her type-
distribution. A direct mechanism is Bayesian Incentive Compatible if it is a Bayes Nash equilibrium for every bidder
to truthfully report her type to the auctioneer.

3

performed by bidders and auctioneer be computationally efficient. This is important as placing no
computational restrictions on the bidder side easily leads to spurious “efficient” solutions to OMD,
as discussed in Section 6.2.

In view of the above discussion, Theorem 1 establishes that, even in very simple special cases of
the OMD problem, there does not exist a pair (C,S) of efficient auction computation and simulation
algorithms, i.e. the optimal auction cannot be found computationally efficiently, or cannot be
executed efficiently, or both. We note that our hardness result is subject to the assumption ZPP 6⊇
P
#P (rather than P 6⊇ P

#P) solely because we prove lower bounds for randomized mechanisms.

Remark 1 (Hardness of BIC Mechanisms). A lot of research on optimal mechanism design has
focused on finding optimal Bayesian Incentive Compatible (BIC) mechanisms, as focusing on such
mechanisms costs nothing in revenue due to the direct revelation principle (see [18] and Section 2).
As an immediate corollary of Theorem 1 we obtain that it is #P-hard to compute the (possibly
randomized) allocation and price rule of the optimal BIC mechanism (Corollary 1 in Section 2).
However, Theorem 1 is much broader, in two respects: a. in the definition of the OMD problem
we impose no constraints on what type of auction should be found; b. we don’t require an explicit
computation of the (possibly randomized) allocation and price rule of the mechanism, but allow an
expected polynomial-time algorithm that samples from the allocation and price rule.

1.2 Techniques

There are serious obstacles in establishing intractability results for optimal mechanism design, the
main one being that the structure of optimal mechanisms is poorly understood even in very simple
settings. To prove Theorem 1, we need to find a family of mechanism design instances whose
optimal solutions are sufficiently complex to enable reductions from some #P-hard problem, while
at the same time are sufficiently restricted so that solutions to the #P-hard problem can actually be
extracted from the structure of the optimal mechanism. However, there is no apparent structure
in the optimal mechanism even in the simple case of a single additive bidder.

To gain some intuition, it is worth pointing out that the optimal mechanism for selling multiple
items to an additive bidder is not necessarily comprised of the optimal mechanisms for selling each
item separately. Here is an example from Hart and Nisan [14]. Suppose that there are two items
and the bidder’s value for each is either 1 or 2 with probability 1

2 , independently of the other item.
In this case, the maximum expected revenue from selling the items separately is 2, achieved e.g. by
posting a price of 1 on each item. However, offering instead the bundle of both items at a price of
3 achieves a revenue of 3 · 34 = 9

4 .
On the other hand, bundling the items together is not always better than selling them separately.

If there are two items with values 0 or 1 with probability 1
2 , independently from each other, then

selling the bundle of the two items achieves revenue at most 3
4 , but selling the items separately

yields revenue of 1, which is optimal.
In general, the optimal mechanism may have much more intricate structure than either selling

the grand bundle of all the items, or selling each item separately, even when the item values are
i.i.d. In fact, the optimal mechanism might not even be deterministic: we may need to offer for sale
not only sets of items, but also lotteries over sets of items. Here is an example. Suppose that there
are two items, one of which is distributed uniformly in {1, 2} and the other uniformly in {1, 3}, and
suppose that the items are independent. In this case, the optimal mechanism offers the bundle of
the two items at price 4, and it also offers at price 2.5 a lottery that with probability 1

2 gives both
the items and with probability 1

2 just the first item.6

6That this is the optimal mechanism follows from our techniques; see Section 4.4.

4

Given that optimal mechanisms have no apparent structure, even in the simple case of an ad-
ditive bidder with independent values for the items, the main challenge in proving our hardness
result is pinning down a family of sufficiently interesting instances of the problem for which we can
still characterize the form of the optimal mechanism. To do this we follow a principled approach
starting with a folklore, albeit exponentially large, linear program for revenue optimization, con-
structing a relaxation of this LP, and showing that, in a suitable class of instances, the solution of
the relaxed LP is also a solution to the original LP, which has rich enough structure to embed a
#P-hard problem. In more detail, our approach is the following:

• In Section 3.1 we present LP1, the folklore, albeit exponentially large, linear program for
computing a revenue optimal auction.

• In Section 3.2 we relax the constraints of LP1 to construct a new, still exponentially large,
linear program LP2. The solutions of the relaxed LP need not provide solutions to the original
mechanism design problem. We prove however that an optimal LP2 solution is indeed an
optimal LP1 solution if it happens to be monotone and supermodular.

• In Section 3.3 we take LP3, the dual program to LP2. We interpret its solutions as solutions
to a minimum-cost flow problem on a lattice.

• In Section 4.1 we characterize a canonical solution to a specific subclass of LP3 instances.
This solution requires ordering of the subset sums of an appropriate set of integers.

• In Section 4.2 we use duality to convert a canonical LP3 solution to a unique LP2 solution.
We are therefore able to characterize the unique solution for a variety of LP2 instances.

• In Section 4.3 we show that the LP2 solutions obtained above are also feasible and optimal
for the corresponding LP1 instance. Thus, we gain the ability to characterize unique optimal
solutions of a class of LP1 instances.

• In Section 5 we show how to encode a #P-hard problem into the class of LP1 instances that
we have developed.

1.3 Related Work

We have already provided background on optimal mechanism design in economics literature, as
well as algorithmic solutions to the problem. We summarize the state of affairs in that exact,
computationally efficient solutions are known for broad multi-item settings, as long as the bidder
types are independent and their type-distributions are given explicitly. In particular, the runtime of
such solutions is polynomial in the size of the support of each bidder’s type-distribution, which may
be exponential in the natural description complexity of the distribution, e.g., when the distribution
is product over the items.

There has also been considerable effort towards computational lower bounds for the problem.
Nevertheless, all known results are for either somewhat exotic families of valuation functions or
distributions over valuations, or for computing the optimal deterministic, as opposed to general
(possibly randomized) auction. In the first vein, Dobzinski et al. [13] show that optimal mechanism
design for OXS bidders is NP-hard via a reduction from the Clique problem. OXS valuations
are described implicitly via a graph, include additive, unit-demand7 and much broader classes
of valuations, and are more amenable to lower bounds given the combinatorial nature of their
definition. (See further discussion in Section 6.) In very recent work [11] the authors of the present

7A unit-demand bidder is described by a vector (v1, . . . , vn) of values, where n is the number of items. If the
bidder receives item i, her value is vi, while if she receives a set of more than one item, her value for that set is her
value for her favorite item in the set.

5

paper prove #P-hardness of the optimal mechanism design problem for a single item and a single
bidder whose value for the item is the sum of independently distributed attributes. Compared to
these lower bounds, our goal in this paper is instead to prove intractability results for very simple
valuations (namely additive) and distributions over them (namely the item values are independent
and the distribution of each item is given explicitly), and which have no combinatorial structure
incorporated in their definition.

On the complexity of optimal deterministic auctions, Briest [5] shows inapproximability results
for selling multiple items to a single unit-demand bidder via an item-pricing auction,8 when the
bidder’s values for the items are correlated according to some explicitly given distribution. More
recently, Papadimitriou and Pierrakos [19] show APX-hardness results for the optimal, incentive
compatible, deterministic auction when a single item is sold to multiple bidders, whose values
for the item are correlated according to some explicitly given distribution. (We note that the
settings considered in both Briest [5] and Papadimitriou-Pierrakos [19] are polynomial-time solvable
via linear programming when the determinism requirement is removed [13, 12].) Finally, in [11]
the authors of the present paper provide SqrtSum-hardness results for the optimal item-pricing
problem when there is a single unit-demand bidder whose values for the items are independent of
support two, and when either the values or the probabilities may be irrational. Compared to these
results, our lower bounds apply to general (i.e. possibly randomized) auctions, the values of the
items are distributed independently, and both supports and probabilities are rational numbers.

1.4 Further Results and Discussion

In addition to our main theorem, Theorem 1, we show that, beyond additive valuations, compu-
tational intractability arises for very simple settings with submodular valuations, namely even for
a single, budget-additive,9 quasi-linear bidder whose values for the items are perfectly known, but
there is uncertainty about her budget. This is presented as Theorem 2 in Section 6.1.

Interestingly, the hard instances constructed in the proof of Theorem 2 have trivial indirect
mechanism descriptions, but require NP power for the bidder to determine what to buy. We show
that this phenomenon is quite general, discussing how easily implementable, optimal, indirect mech-
anisms may be trivial to compute, if the bidders are assumed sufficiently powerful computationally.
This is discussed in Section 6.2, and further justifies our framework (in Section 1.1) for studying
the complexity of optimal mechanism design.

2 Preliminaries

Throughout this paper, we restrict our attention to instances of the mechanism design problem
where a seller wishes to sell a set N = {1, 2, . . . , n} of items to a single additive quasi-linear bidder
whose values for the items are independent of support 2. In particular, the bidder values item i at
ai, with probability 1 − pi, and at ai + di, with probability pi, independently of the other items,
where ai, di, and pi are positive rational numbers. If she values i at ai, we say that her value for
i is “low” and, if she values it at ai + di, we say that her value is “high.” The specification of the
instance comprises the numbers {ai, di, pi}

n
i=1.

8An item-pricing auction posts a price for each item, and lets the bidder buy whatever item s/he wants. It is
clearly a deterministic auction as there is no randomness used by the auctioneer. A randomized auction for this
setting could also be pricing lotteries over items.

9A budget-additive bidder is described by a value-vector (v1, . . . , vn), where vi is her value for item i ∈ [n], and a
budget B so that her value for a subset S of items is min{

∑
i∈S

vi, B}.

6

A mechanismM for an instance I as above specifies a set A of actions available to the bidder
together with a rule mapping each action α ∈ A to a (possibly randomized) allocation Aα ∈
{0, 1}n, specifying which items the bidder gets, and a (possibly randomized) price τα ∈ R that
the bidder pays, where Aα and τα could be correlated. Facing this mechanism, a bidder whose
values for the items are instantiated to some vector ~v ∈ ×i{ai, ai + di} chooses any action in
argmaxα∈A{~v · E(Aα) − E(τα)} or any distribution on these actions, as long as the maximum
is non-negative, since ~v · E(Aα) − E(τα) is the expected utility of the bidder for choosing action
α.10 In particular, any such choice is a Bayesian Nash equilibrium behavior for the bidder, in the
degenerate case of a single bidder that we consider.11 If for all vectors ~v there is a unique optimal
action α~v ∈ A in the above optimization problem, then mechanism M induces a mapping from
valuations ~v ∈ ×i{ai, ai + di} to (possibly randomized) allocation and price pairs (Aα~v

, τα~v
). If

there are ~v’s with non-unique maximizers, then we break ties in favor of the action with the highest
E(τα) and, if there are still ties, lexicographically beyond that.12

In Section 1.1 we explained in detail what it means to solve an instance I = {ai, di, pi}
n
i=1

computationally efficiently. In short, the solution needs to encode the action set A as well as the
mapping from actions α ∈ A to (Aα, τα), in a way that given an instantiated type ~v ∈ ×i{ai, ai+di}
we can computationally efficiently sample from Aα~v

and from τα~v
.

It is convenient for our arguments to first study direct mechanisms, where the action set available
to the bidder coincides with her type space ×i{ai, ai + di}. In this case, we can equivalently think
of the actions available to the bidder as declaring any subset S ⊆ N , where the correspondence
between subsets and value vectors is given by ~v(S) =

∑

i∈N aiei +
∑

i∈S diei where ei is the unit
vector in dimension i; i.e. S represents the items whose values are high. For all actions S ⊆ N , the
mechanism induces a vector ~q(S) ∈ [0, 1]n of probabilities that the bidder receives each item and
an expected price τ(S) ∈ R that the bidder pays. The expected utility of a bidder of type ~v(S)
for choosing action S′ is given by ~v(S) · ~q(S′) − τ(S′). We denote by u(S) = ~v(S) · ~q(S) − τ(S)
her expected utility for reporting her true type. The following are important properties of direct
mechanisms.

Definition 1. A direct mechanism for the family of single-bidder instances we consider in this
paper is Bayesian Incentive Compatible (BIC) if the bidder cannot benefit by misreporting the set
of items he values highly. Formally:

∀S, T ⊆ N : ~v(S) · ~q(S)− τ(S) ≥ ~v(S) · ~q(T)− τ(T).

Or, equivalently:
∀S, T ⊆ N : u(S) ≥ u(T) + (~v(S)− ~v(T)) · ~q(T).

Definition 2. The mechanism is individually rational (IR) if u(S) ≥ 0, for all S ⊆ N .

We note that an immediate consequence of our proof of Theorem 1 is the following.

10If the maximum utility under ~v is negative, the bidder would “stay home.” To ease notation, we can include in
A a special action “stay home” that results in the bidder getting nothing and paying nothing. If all other actions
give negative utility the bidder could just use this special action.

11As mentioned earlier, we opt not to define Bayesian Nash equilibrium for multi-bidder mechanisms as this
definition is involved and irrelevant for our purposes.

12We can enforce this tie-breaking with an arbitrarily small hit on revenue as follows: For all α, we decrease the
(possibly random price) τα output by M by a well-chosen amount—think of it as a rebate—which gets larger as E(τα)
gets larger. We can choose these rebates to be sufficiently small so that they only serve the purpose of tie-breaking.
These rebates won’t affect our lower bounds.

7

Corollary 1. Given an instance I = {ai, di, pi}
n
i=1 of the optimal mechanism design problem (i.e.

the same setting as Theorem 1), it is #P-hard to compute circuits (or any other implicit but efficient
to evaluate description of) q : ×i{ai, ai + di} → [0, 1]n and τ : ×i{ai, ai + di} → R inducing a
revenue-optimal, BIC, IR mechanism.

Note that, for a meaningful lower bound, we cannot ask for q(S), τ(S) for all S, as there are too
many S’s—namely 2n. Instead we need to ask for some implicit but computationally meaningful
description of them, such as in the form of circuits, which can be evaluated on an input S in time
polynomial in their size and the number of bits required to describe S—if we don’t require that q
and τ can be evaluated efficiently on any given S we would allow for trivial solutions such as “I is
itself an implicit description of the optimal q and τ for I.” We conclude with the following remark.

Remark 2. For the single-bidder instances we consider in this paper, a direct mechanism that is
Bayesian Incentive Compatible is also Incentive Compatible and vice versa.13 As all our hardness
results are for single-bidder instances, they simultaneously show the intractability of computing
optimal Bayesian Incentive Compatible as well as optimal Incentive Compatible mechanisms.

2.1 Our Proof Plan

To prove Theorem 1 we narrow into a family of single-bidder instances (of the form defined in
the beginning of this section) for which there is a unique optimal BIC, IR, direct mechanism, and
this mechanism satisfies the following: for a special item i∗ and a special type S∗, qi∗(S

∗) ∈ {0, 1}
but it is #P-hard to decide whether qi∗(S

∗) = 0. Our approach for narrowing into this family of
instances was outlined in Section 1.2 and is provided in detail in Sections 3 through 5. These
sections establish two hardness results: First, they show Corollary 1 that it is #P-hard to compute
circuits for q and τ , as if we could compute such circuits in polynomial time then we would also
be able to answer whether qi∗(S

∗) = 0 in polynomial time. Second, they establish Theorem 1
restricted to BIC mechanisms. Indeed, if there were expected polynomial-time algorithms C, S (see
Section 1.1), then we would plug in type S∗ and get one sample from the allocation rule for that
type. Notice that this sample will allocate item i∗ if and only if qi∗(S

∗) = 1, which is #P-hard to
decide. Details are provided in Section 5.

Finally, it is straightforward to translate this hardness result to general mechanisms by making
the following observation, called the “Revelation Principle” [18]:

• Any (possibly non-direct) mechanismM has an equivalent BIC, IR, direct mechanismM′ so
that the two mechanisms induce the exact same mapping from types ~v to (possibly random-
ized) allocation and price pairs. Indeed, as explained above, given the (possibly randomized)
allocation rule A and price rule τ of M we can define the mapping ~v 7→ (Aα~v

, τα~v
). This

mapping is in fact itself a BIC, IR direct mechanismM′. Clearly,M andM′ have the same
expected revenue.

As mentioned above, the hard instances we narrow into in our proof satisfy that their optimal BIC,
IR direct mechanism is unique and it is a #P-hard problem to tell whether qi∗(S

∗) = 0 or 1 for a

13For the reader who is not familiar with these concepts here is a brief explanation. A direct multi-bidder mechanism
is Incentive Compatible if, for all bidders i and all ti, it is optimal for bidder i to truthfully report ti no matter what
the other bidders report. It is a stronger notion than Bayesian Incentive Compatibility which requires that, for all
bidders i and all ti, it is optimal for bidder i to truthfully report ti, if the other bidders also truthfully report their
types in expectation with respect to their realized types. I.e. the latter concept requires that it is Bayesian Nash
equilibrium for every bidder to truthfully report their type, while the former concept requires that it is a Dominant
Strategy equilibrium for every bidder to truthfully report their type. Clearly, the two concepts collapse if there is
just one bidder.

8

special item i∗ and a special type S∗. The above observation implies that, for any instance in our
family, any (possibly non-direct) optimal mechanismM for this instance needs to induce an optimal
direct mechanism. Since the latter is unique, M needs to give the same (possibly randomized)
allocation to type S∗ that the unique direct mechanism does. As argued above, getting one sample
from this allocation allows us to decide whether qi∗(S

∗) = 1, a #P-hard problem. As any efficient
solution to our family of OMD instances would allow us to get samples from the allocation rule of
an optimal mechanism in expected polynomial-time, we would be able to solve a #P-hard problem
in expected polynomial-time. This establishes Theorem 1 (for unrestricted mechanisms).

3 A Linear Programming Approach

Our goal in Sections 3 through 5 is showing that it is computationally hard to compute a BIC, IR
direct mechanism that maximizes the seller’s expected revenue, even in the single-bidder setting
introduced in Section 2. In this section, we define three exponential-size linear programs which are
useful for zooming into a family of hard instances that are also amenable to analysis. Our LPs are
defined using the notation introduced in Section 2.

3.1 Mechanism Design as a Linear Program

The optimal BIC and IR mechanism for the family of single-bidder instances introduced in Section 2
can be found by solving the following linear program, which we call LP1:

max ES [~v(S) · ~q(S)− u(S)]

subject to :
∀S, T ⊆ N : u(S) ≥ u(T) + (~v(S)− ~v(T)) · ~q(T) (BIC)
∀S ⊆ N : u(S) ≥ 0 (IR)
∀S ⊆ N, i ∈ N : 0 ≤ qi(S) ≤ 1 (PROB)

Figure 1: LP1, the linear program for revenue maximization

Notice that the expression ~v(S) · ~q(S) − u(S) in the objective function equals the price τ(S) that
the bidder of type S pays when reporting S to the mechanism. The expectation is taken over all
S ⊆ N , where the probability of set S is given by p(S) =

∏

i∈S pi ·
∏

j /∈S(1 − pj). We notice that
this program has exponential size (variables and constraints).

3.2 A Relaxed Linear Program

We now remove constraints from LP1 and perform further simplifications, making the program
easier to analyze. Later on we identify a subclass of instances where optimal solutions to the
relaxed program induce optimal solutions to the original program (see Lemma 3).

As a first step, we relax LP1 by considering only BIC constraints that correspond to neighboring
types (types that differ in one element). We also drop the constraint that the probabilities qi(S)
are non-negative:

max ES [~v(S) · ~q(S)− u(S)]

9

subject to :
∀S ⊆ N, i /∈ S : u(S ∪ {i}) ≥ u(S) + diqi(S) (BIC1)
∀S ⊆ N, i /∈ S : u(S) ≥ u(S ∪ {i}) − diqi(S ∪ {i}) (BIC2)
∀S ⊆ N : u(S) ≥ 0 (IR)
∀S ⊆ N, i ∈ N : qi(S) ≤ 1 (PROB’)

Since the coefficient of every qi(S) in the objective is strictly positive, no qi(S) can be increased
in any optimal solution without violating a constraint. We therefore conclude the following about
qi(S):

• If i ∈ S, then qi(S) is only upper-bounded by constraint PROB’, and thus qi(S) = 1 in every
optimal solution.

• If i /∈ S, then qi(S) = min{1, u(S∪{i})−u(S)
di

} from (BIC1) and (PROB’). Furthermore, from

(BIC2) we have u(S∪{i})−u(S)
di

≤ qi(S ∪ {i}) = 1, and thus qi(S) =
u(S∪{i})−u(S)

di
.

So the program becomes (after setting qi(S) = 1 whenever i ∈ S, removing the constant terms
from the objective, and tightening the constraints (BIC1) to equality):

max ES

[

∑

i/∈S

vi(S)qi(S)− u(S)

]

subject to :

∀S ⊆ N, i /∈ S : qi(S) =
u(S∪{i})−u(S)

di
(BIC1’)

∀S ⊆ N, i /∈ S : u(S ∪ {i})− u(S) ≤ di (BIC2)
∀S ⊆ N : u(S) ≥ 0 (IR)
∀S ⊆ N, i /∈ S : qi(S) ≤ 1 (PROB’)

Notice that the constraint (PROB’) is trivially satisfied as a consequence of (BIC1’) and (BIC2).
We now rewrite the objective, substituting qi(S) according to (BIC1’) and noting that vi(S) = ai

for i /∈ S:

ES

[

∑

i/∈S

ai
u(S ∪ {i}) − u(S)

di
− u(S)

]

= ES

[

u(S)

(

−1−
∑

i/∈S

ai
di

+
∑

i∈S

(

ai
di
·
p(S \ {i})

p(S)

)

)]

obtained by grouping together all coefficients of u(S), adjusting by the appropriate probabilities.

We now note that p(S\{i})
p(S) = −1 + 1

pi
, and our objective becomes:

ES

[

u(S)

(

−1−
∑

i∈N

ai
di

+
∑

i∈S

ai
pidi

)]

.

We now perform a change of notation so that the program takes a simpler form. In particular,
we set

B ← κ

(

1 +
∑

i∈N

ai
di

)

; xi ←
κai
pidi

where κ is some positive constant, and the objective becomes
1
κES[(

∑

i∈S xi−B)u(S)]. Since 1/κ is constant, we are lead to study the following program, LP2:

10

max
u

ES [(
∑

i∈S

xi −B)u(S)]

subject to :
∀S ⊆ N, i /∈ S : u(S ∪ {i})− u(S) ≤ di (BIC2)
∀S ⊆ N : u(S) ≥ 0 (IR)

Figure 2: LP2, the relaxed linear program

In constructing LP2, our new constants B and x were a function of ~p, ~a, ~d, and a newly
introduced constant κ. We note that, by adjusting κ, we are able to obtain a wide range of relevant
B and x values.

Lemma 1. For any B, ~x, ~p and ~d such that B >
∑

i∈N pixi, there exist (efficiently computable) ~a

and κ such that B = κ(1+
∑

i∈N
ai
di
) and xi =

κai
pidi

. If B, ~x, ~p and ~d are rational, then ~a and κ are
rational as well.

Proof. We want that xi =
κai
pidi

and B = κ +
∑

i∈N
κai
di

= κ +
∑

i∈N pixi. Indeed, these equalities
follow from setting

κ← B −
∑

i∈N

pixi; ai ←
pidixi
κ

.

3.3 The Dual of the Relaxed Program, and its Min-Cost Flow Interpretation

To characterize the structure of optimal solutions to LP2, we use linear programming duality.
Consider LP3, LP2’s dual program, which has a (flow) variable fS∪{i}→S for every set S and i /∈ S.

min
f

∑

S

∑

i/∈S

fS∪{i}→Sdi

subject to :
∀S ⊆ N : −

∑

i/∈S fS∪{i}→S +
∑

i∈S fS→S\{i} ≥ p(S)
(
∑

i∈S xi −B
)

∀S ⊆ N, i /∈ S : fS∪{i}→S ≥ 0

Figure 3: LP3, the dual of LP2

We interpret LP3 as a minimum-cost flow problem on a lattice. Every node on the latice
corresponds to a set S ⊆ N , and flow may move downwards from S to S \ {i} for each i ∈ S. The
variable fS→S\{i} represents the amount of flow sent this way, and the cost of sending each unit of
flow along this edge is di.

For nodes S with p(S)
(
∑

i∈S xi −B
)

≥ 0, we have an external source supplying the node with
at least this amount of flow. We call such a node “positive.” Nodes with p(S)

(
∑

i∈S xi −B
)

< 0,
which we call “negative,” can deposit at most |p(S)

(
∑

i∈S xi −B
)

| to an external sink.
Since di > 0 for all i, an optimal solution to LP3 will have net imbalance exactly p(S)

(
∑

i∈S xi −B
)

for each positive node S.

11

4 Characterizing the Linear Programming Solutions

For the remainder of the paper, we restrict our attention to the case where N is the only positive
node in LP3. We notice that there is a feasible solution if and only if

p(N)

(

∑

i∈N

xi −B

)

≤ −
∑

S(N

p(S)

(

∑

i∈S

xi −B

)

which occurs when ES [
∑

i∈S xi−B] ≤ 0. Since the components of S are chosen independently, the
program is feasible precisely when

∑

i∈N pixi −B ≤ 0.

4.1 The Canonical Solution to LP3

When there is a single positive node, we can easily construct an optimal solution to LP3 as follows.
Define the cost of each node S to be cost(S) =

∑

i∈N\S di, and order the negative nodes S1, S2, . . .
in non-decreasing order of cost (and lexicographically if there are ties). We greedily send flow to the
negative nodes in order, moving to the next node only when all previous nodes have been saturated.
(The flow can be sent along any path to the node, since all such paths have the same cost.) We
stop when a net flow of p(N)

(
∑

i∈N xi −B
)

has been absorbed by the negative nodes we sent flow
to. We call this the canonical solution to LP3, and notice that the canonical solution is the unique
optimal solution to LP3 up to the division of flow between equal cost nodes.

4.2 From LP3 to LP2 Solutions

We now show how to use a canonical solution to LP3 to construct a solution to LP2. In most
instances, this solution is unique.

Lemma 2. Let S∗ be the highest-cost negative node which absorbs non-zero flow in the canonical
solution f of LP3, and suppose that S∗ is not fully saturated by f . Then the utility function
u(S) = max{cost(S∗)− cost(S), 0} is the unique optimal solution to LP2.

Proof. Consider an arbitrary optimal LP2 solution u. We will use linear programming complemen-
tarity to prove that u is uniquely determined by the canonical solution f .

For any node S that receives nonzero flow in f , there is a path N = S0, S1, S2, . . . , Sk = S
from N to S that has positive flow along each edge. By complementarity, the (BIC2) inequalities
corresponding to these edges in the primal program are tight in u. That is, for all i = 1, . . . , k, we
have u(Si−1)− u(Si) = dx, where x is the unique element of Si−1 \Si. So, for any S which receives
nonzero flow in f :

u(N)− u(S) =
∑

i∈N\S

di = cost(S).

For all nodes S′ which are not fully saturated in f (i.e. S∗ as well as all nodes which receive no
flow), u(S′) must be 0 in u by complementarity, since the corresponding LP3 constraints are not
tight. In particular, since S∗ receives flow but is not fully saturated, we have u(S∗) = 0 and hence:

u(N) = u(N)− u(S∗) = cost(S∗).

Therefore, any node S which receives flow in f must have u(S) = u(N) − cost(S) = cost(S∗) −
cost(S).

Furthermore, a node S always receives flow in f if its cost is less than cost(S∗), and receives no
flow if its cost is greater than cost(S∗). Moreover, those nodes S with cost(S) = cost(S∗) either

12

receive no flow in which case u(S) = 0, or receive flow in which case u(S) = cost(S∗)− cost(S) = 0.
Thus, we have shown that for any node S, u(S) = max{cost(S∗)− cost(S), 0}. It is easy to verify
that this utility function satisfies all the constraints of LP2.

If the highest cost node S∗ to receive flow in f is fully saturated, then the utility function
described above is still an optimal LP2 solution. However, in this case, if the cheapest unfilled
node in f has strictly greater cost than S∗, then the optimal primal solution is not unique.

4.3 From LP2 to LP1 Solutions

We now show that, in certain cases, a solution to LP2 allows us to obtain a solution to LP1 where
~p, ~a and ~d are as in Lemma 1.

Lemma 3. Suppose B >
∑

i∈N pixi and an optimal solution u to LP2 is monotone and super-

modular. Then there is some q such that (u, q) is an optimal solution to LP1 where ~p, ~a, ~d are
as in Lemma 1. If u is the unique optimal solution to LP2, then (u, q) is the unique optimal LP1
solution.

Proof. We set

qi(S) =

{

1, if i ∈ S;
u(S∪{i})−u(S)

di
, otherwise.

With this choice, as explained in Section 3.2, (u, q) is an optimal solution to a relaxation of LP1.
So to establish optimality of (u, q) for LP1 it suffices to show that (u, q) satisfies all the constraints
of LP1.

We first notice that the (IR) constraints are satisfied, since u(S) ≥ 0 for all S in LP2.
We now show that the (PROB) constraints are satisfied. Indeed, if i ∈ S, then qi(S) = 1.

If i 6∈ S, then qi(S) ≥ 0 follows from monotonicity of u. The inequality qi(S) ≤ 1 follows from
constraint (BIC2) of LP2.

Finally, we show that the (BIC) constraints of LP1 are satisfied. By supermodularity of u we
have that for all S, all i /∈ S and all j 6= i:

u(S ∪ {i} ∪ {j}) − u(S ∪ {j}) ≥ u(S ∪ {i}) − u(S).

Dividing by di we obtain qi(S ∪{j}) ≥ qi(S) for all i 6∈ S and j 6= i. Since the inequality is trivially
satisfied if i ∈ S (since both sides are 1), or j = i (since qi(S ∪ {i}) = 1) we conclude that ~q is
monotone.

Now pick any distinct subsets S, T ⊆ N . We must show that:

u(S) ≥ u(T) + (~v(S)− ~v(T)) · ~q(T).

Consider an ordering i1, i2, . . . , ik of the elements of T \ S and an ordering j1, j2, . . . , jℓ of the
elements of S \ T .

By (BIC2), we know that, for all r = 1, . . . , k:

u

(

S ∪
r
⋃

t=1

{it}

)

≤ u

(

S ∪
r−1
⋃

t=1

{it}

)

+ dir .

Summing over r and cancelling terms, we conclude u(S ∪ T) ≤ u(S) +
∑k

r=1 dir .

13

From our definition of ~q it follows that for all r = 1, . . . , ℓ:

u

(

T ∪
r
⋃

t=1

{jt}

)

= u

(

T ∪
r−1
⋃

t=1

{jt}

)

+ djrqjr

(

T ∪
r−1
⋃

t=1

{jt}

)

.

By monotonicity of ~q, it follows that

u

(

T ∪
r
⋃

t=1

{jt}

)

≥ u

(

T ∪
r−1
⋃

t=1

{jt}

)

+ djrqjr(T).

Summing over r, we conclude that u(S ∪ T) ≥ u(T) +
∑ℓ

r=1 djrqjr(T).
Combining this with our earlier upper bound for u(S ∪ T), we conclude that

u(S) ≥ u(T) +
ℓ
∑

r=1

djrqjr(T)−
k
∑

r=1

dir .

Since qir(T) = 1 for all r, we have

u(S) ≥ u(T) +
∑

j∈S\T

djqj(T)−
∑

i∈T\S

diqi(T)

and thus the (BIC) constraint of LP1 is satisfied.
If u is the unique optimal solution to LP2, then the (u, q) constructed as above is the unique

optimal solution to LP1, as it is the unique optimal solution of a relaxation of LP1.

4.4 Putting it All Together

In summary, we have shown that if the canonical solution of LP3 has a partially saturated node
S∗, then LP2 has a unique optimal solution, namely u(S) = max{cost(S∗) − cost(S), 0}. Since
this utility function is monotone and supermodular, it also defines a unique optimal solution of the
corresponding LP1 instance.

Corollary 2. Let S∗ be the highest-cost negative node which absorbs non-zero flow in the canonical
solution of LP3, and suppose that S∗ is not fully saturated. Then the original mechanism design
problem with ~p, ~a and ~d as in Lemma 1 has a unique optimal solution, and the utility of a player
of type N in this solution is cost(S∗).

5 Proof of Theorem 1: Hardness Of Mechanism Design

We use the results of the previous section to establish the computational hardness of optimal
mechanism design. Our reduction is from the lexicographic rank problem, which we show to be
#P-hard.

Definition 3 (LexRank problem). Given a collection C = {c1, . . . , cn} of positive integers and a
subset S ⊆ {1, . . . , n}, we define the lexicographic rank of S, denoted lexrC(S), by

lexrC(S) ,

{

S′ : |S′| = |S| and

∑

i∈S′

ci <
∑

j∈S

cj or

∑

i∈S′

ci =
∑

j∈S

cj and S′ ≤lex S

}

14

where S′ ≤lex S is with respect to the lexicographic ordering.14 The LexRank problem is: Given
C, S, and an integer k, determine whether or not lexrC(S) ≤ k.

5.1 Hardness of LexRank

We now show that the LexRank problem is #P-hard by a reduction from #-SubsetSum.

Definition 4 (#-SubsetSum problem). Given a collection W = {w1, . . . , wn} of positive integers
and a target integer T , compute the number of subsets S ⊆ {1, . . . , n} such that

∑

i∈S wi ≤ T .

The #-SubsetSum problem is known to be #P-hard. Indeed, the reduction from SAT to
SubsetSum as presented in [21] is parsimonious.

Lemma 4. LexRank is #P-hard.

Proof. Given an oracle for the LexRank problem, it is straightforward to do binary search to
compute the lexicographic rank of a set S. We will prove hardness of LexRank by reducing the
#-SubsetSum problem to the computation of lexicographic ranks of a collection of sets.

Let (W, T) be an instance of #-SubsetSum, whereW = {w1, . . . , wn} is a collection of positive
integers and T is a target integer. We begin by defining, for m = 1, . . . , n:

countW(T,m) ,

∣

∣

∣

∣

∣

{

S ⊆ {1, . . . , n} : |S| = m and
∑

i∈S

ti ≤ T

}∣

∣

∣

∣

∣

.

Note that the number of subsets of W which sum to at most T is simply
∑n

m=1 countW(T,m). So
it suffices to compute countW(T,m) for all m.

To do this, we define n different collections C1, . . . ,Cn, where Cℓ = {c
ℓ
1, . . . , c

ℓ
n+ℓ} is given by:

cℓi =

4nwi if 1 ≤ i ≤ n

4nT + 2n if i = n+ 1

1 if n+ 2 ≤ i ≤ n+ ℓ.

We also define a special set Sℓ , {n+1, n+2, . . . , n+ ℓ}. Notice that
∑

i∈Sℓ
cℓi = 4nT +2n+ ℓ− 1.

Furthermore, for every subset S ⊆ {1, . . . , n}, we have
∑

i∈S

cℓi = 4n
∑

i∈S

wi.

Hence, for all ∅ 6= S ⊆ {1, . . . , n}:

1. if
∑

i∈S wi > T , then
∑

i∈S cℓi >
∑

j∈Sℓ
cℓj ;

2. if
∑

i∈S wi ≤ T , then for all U ⊆ {n+ 2, n + 3, . . . , n+ ℓ} we have
∑

i∈S∪U cℓi <
∑

j∈Sℓ
cℓj ;

3. for all U ⊆ {n+ 2, n + 3, . . . , n+ ℓ},
∑

i∈S∪U∪{n+1} c
ℓ
i >

∑

j∈Sℓ
cℓj .

Given that |Sℓ| = ℓ the above imply

lexrCℓ
(Sℓ) = 1 +

ℓ
∑

m=1

(

countW(T,m) ·

(

ℓ− 1

ℓ−m

))

.

Suppose we have an oracle which can compute the lexicographic rank of a given set. We first
use this oracle to determine lexrC1

(S1) and thereby compute countW(T, 1). Next, we use the
oracle to determine lexrC2

(S2) and thereby compute countW(T, 2), using the previously computed
value of countW(T, 1). Continuing this procedure n times, we can compute countW(T,m) for all
m = 1, . . . , n. This concludes the proof.

14To be precise, we say that S1 ≤lex S2 iff the largest element in the symmetric difference S1△S2 belongs to S2.

15

5.2 Hardness of Mechanism Design: Reduction from LexRank

We will prove hardness of the OMD problem via a reduction from LexRank. Let (C, S, k) be an
instance of LexRank where C = {c1, . . . , cn} is a collection of positive integers, S ⊆ {1, . . . , n},
and k is integer. We wish to determine whether lexrC(S) ≤ k. We assume that |S| 6= 0, n as
otherwise the problem is trivial to solve.

We denote by [n] the set {1, 2, . . . , n} and [n+1] = [n]∪{n+1}. We construct an OMD instance
indirectly, by defining an instance of LP3 with the following parameters:

• di = 2n+1
(

ci +
∑n

j=1 cj

)

+ 2i, for i = 1, . . . , n;

• dn+1 = 1;

• xi = 2, for all i;

• B = 2n+ 1;

• pi = p for all i, where we leave p ∈ [0.5, 1 − 1
2n+2) a parameter.

We note that B >
∑

i xipi, and thus Lemma 1 implies that, for all p, an instance of LP3 as above
arises from some OMD instance {ai, di, pi}

n+1
i=1 , in the notation of Section 2.

Denote by Sc the set [n] \ S.15 Suppose that, for some value p, there is a partially filled node
T ∗ in the canonical LP3 solution such that T ∗ ⊆ [n] and |T ∗| = n− |S|. Using Lemma 2 we have

qn+1(S
c) =

u∗(Sc ∪ {n+ 1}) − u∗(Sc)

1
= max{cost(T ∗)− cost(Sc ∪ {n+ 1}), 0} −max{cost(T ∗)− cost(Sc), 0}

= max{cost(T ∗)− cost(Sc) + 1, 0} −max{cost(T ∗)− cost(Sc), 0}

Therefore, since the cost of each set is an integer,

qn+1(S
c) =

{

0 if cost(Sc) > cost(T ∗)

1 if cost(Sc) ≤ cost(T ∗).

Since n+ 1 is in neither Sc nor T ∗,

qn+1(S
c) =

{

0 if
∑

i∈S di >
∑

j∈[n]\T ∗ dj

1 if
∑

i∈S di ≤
∑

j∈[n]\T ∗ dj .

By our construction of the di’s we can see that since |T ∗| = n− |S|,

qn+1(S
c) =

0 if
∑

i∈S ci >
∑

j∈[n]\T ∗ cj

1 if
∑

i∈S ci <
∑

j∈[n]\T ∗ cj

1 if
∑

i∈S ci =
∑

j∈[n]\T ∗ cj and S ≤lex ([n] \ T ∗)

0 if
∑

i∈S ci =
∑

j∈[n]\T ∗ cj and S >lex ([n] \ T ∗)

Therefore, qn+1(S
c) = 1 if lexrC(S) ≤ lexrC([n] \ T

∗) and 0 otherwise.
So our next goal is to set the parameter p such that there is a partially filled node T ∗ in the

canonical LP3 solution such that T ∗ ⊆ [n], |T ∗| = n − |S|, and lexrC([n] \ T
∗) = k. For such

p, distinguishing between qn+1(S
c) = 0 and qn+1(S

c) = 1 would allow us to solve the LexRank

instance. The next lemma shows that a p as required can be found in polynomial time.

15Note that {n+ 1} is in neither S nor Sc.

16

Lemma 5. In polynomial time, we can identify a p̃ ∈ [0.5, 1− 1
2n+2) with O(n log n) bits of precision

such that the partially filled node in the canonical LP3 solution with parameter p = p̃ is a set
T ∗ ⊆ [n] of size n− |S| and lexrC([n] \ T

∗) = k.

Proof. In our construction, the lowest cost negative node is [n]. Furthermore, the cost of every
negative node is unique, and for any T ([n] there is no node with cost between that of T ∪{n+1}
and T . Also, if T and T ′ are proper subsets of [n] and if |T | > |T ′|, then cost(T) < cost(T ′).

For each i between 1 and n − 1, let T i
1, T

i
2, . . . be the ordering of the size-i subsets of [n] in

increasing order of cost. In the canonical LP3 solution, [n] fills first, and T i
j fills before T i′

j′ if it has
larger size (i > i′) or the same size but smaller cost (i = i′ and j < j′). Furthermore, each node
T i
j ∪ {n+ 1} fills immediately before the node T i

j .

Our goal is to choose p so that T
n−|S|
k is partially filled. Indeed, the sets [n] \ T

n−|S|
1 through

[n] \ T
n−|S|
k are precisely the sets counted in the computation of lexrC([n] \ T

n−|S|
k). Notice that

lexicographic tie-breaking of lexr is enforced by construction of adding an additional 2i to di.
The only positive node, [n + 1], emits a net flow of pn+1, and the node [n] absorbs at most

pn(1 − p) flow. For each size i between n − 1 and n − |S| + 1, there are
(n
i

)

sets T ⊆ [n] of size i,
each of which can absorb

|p(T)(2|T | −B)| = (2(n − i) + 1)pi(1− p)n+1−i

flow. Furthermore, each set T ∪ {n + 1} can absorb

|p(T ∪ {n + 1})(2|T | + 2−B)| = (2(n − i)− 1)pi+1(1− p)n−i.

Thus, in total, T and T ∪ {n+ 1} can absorb

pi(1− p)n−i ((1− p)(2n− 2i+ 1) + p(2n− 2i− 1))

= pi(1− p)n−i(2(n − i− p) + 1).

Finally, we notice that T is responsible for at least a 1/(2n + 2) fraction of the quantity above,
since

(2(n − i) + 1)pi(1− p)n+1−i

(2(n − i− p) + 1)pi(1− p)n−i
≥ 1− p >

1

2n + 2
,

using that p < 1− 1
2n+2 .

If all nodes strictly preceding (i.e. with smaller cost than) T
n−|S|
1 ∪{n+1} have been saturated,

the amount of flow still unabsorbed is

pn+1 − pn(1− p)−
n−1
∑

i=n−|S|+1

(

n

i

)

pi(1− p)n−i(2(n− i− p) + 1)

=
n
∑

i=n−|S|+1

(

n

i

)

pi(1− p)n−i(2(i + p− n)− 1).

Therefore, a sufficient condition for T
n−|S|
k to be partially filled in the canonical solution is

f(p) ,

∑n
i=n−|S|+1

(n
i

)

pi(1− p)n−i(2(i + p− n)− 1)

pn−|S|(1− p)|S|(2|S| − 2p + 1)
∈

(

k −
1

2n + 2
, k

)

.

17

We claim that there is such a p∗ ∈ [0.5, 1 − 1
2n+2) such that f(p∗) = k − 1

4n+4 . Indeed, for
p < 0.5, only [n] will ever receive flow, so in this case, f(p) < 0. Furthermore, we can lower-bound
f(p) by the following ratio (where we add a negative quantity to the numerator)

∑n
i=n−|S|+1

(n
i

)

pi(1− p)n−i(2(i+ p− n)− 1) +
∑n−|S|−1

i=0

(n
i

)

pn−i(1− p)i(2(i + p− n)− 1)

pn−|S|(1− p)|S|(2|S| − 2p + 1)

=

∑n
i=0

(n
i

)

pi(1− p)n−i(2(i+ p− n)− 1)−
(n
|S|

)

pn−|S|(1− p)|S|(−2|S|+ 2p− 1)

pn−|S|(1− p)|S|(2|S| − 2p + 1)

and thus

f(p) ≥

(

n

|S|

)

−

∑n
i=0

(

n
i

)

pi(1− p)n−i(2n− 2i− 2p+ 1)

pn−|S|(1− p)|S|(2|S| − 2p+ 1)

=

(

n

|S|

)

−
2n− 2p + 1− 2

∑n
i=0 i

(n
i

)

pi(1− p)n−i

pn−|S|(1− p)|S|(2|S| − 2p+ 1)

=

(

n

|S|

)

−
2n− 2p+ 1− 2pn

pn−|S|(1− p)|S|(2|S| − 2p+ 1)
.

Hence, for p = 1− 1
2n+2 , we get f(p) ≥

(n
|S|

)

≥ k. Using this, the continuity of f , and that f(p) < 0

for p < 0.5, we conclude that there is a p∗ ∈ [0.5, 1 − 1
2n+2) such that f(p∗) = k − 1

4n+4 .

We now consider p̃ = p∗ ± ǫ ∈ [0.5, 1 − 1
2n+2). We claim that f(p̃) ∈ (k − 1

2n+2 , k) as long as

ǫ = O
(

(4n)−4n

4n+4

)

. To show this, we bound the absolute value of the derivative df
dp at all points in

[0.5, 1 − 1
2n+2). The numerator of df

dp is a polynomial in p of degree 2n + 1, where the coefficient

of each term is, in absolute value, O(23n · poly(n)) ≤ O(24n)—using the crude bound
(n
i

)

≤ 2n.

Furthermore, the denominator (pn−|S|(1 − p)|S|(2|S| − 2p + 1))2 of df
dp is greater than

(

1
2n+2

)2n
,

since p ∈ [0.5, 1 − 1
2n+2). Therefore, we can bound the magnitude of the derivative by O((2n +

2)2n(2n+ 1)24n) = O((4n)4n). Since this bound holds for all points in [0.5, 1− 1
2n+2), we conclude

that
f(p̃) ∈ (f(p∗)− ǫO((4n)4n), f(p∗) + ǫO((4n)4n))

and thus, for ǫ = O
(

(4n)−4n

4n+4

)

we have that f(p̃) ∈ (k − 1
2n+2 , k).

Thus, we can find the desired p̃ in polynomial time via binary search on f(p), requiringO(n log n)
bits of precision in p.

We conclude our reduction as follows: First, we compute p̃ as in Lemma 5. Next we solve
the OMD instance resulting from this choice of parameter. The solution (see Section 1.1) induces
expected polynomial-time algorithms C and S. We use them to sample (in expected polynomial-
time) from the allocation and price rule of the optimal auction for type Sc. We have proven that
this type receives item n + 1 with probability 1 if (C, S, k) ∈ LexRank and with probability 0
otherwise. So a single sample from the allocation rule of the optimal auction suffices to tell which
one is the case, since if qn+1(S

c) = 1 then every sample from the allocation rule should allocate
the item and if qn+1(S

c) = 0 then no sample should allocate the item. So if we can solve OMD in
expected polynomial-time, then we can solve LexRank in expected polynomial-time by a. finding
p̃ using Lemma 5; b. solving the resulting OMD instance; c. drawing a single sample from the
allocation rule of the auction for type Sc and outputting “yes” if and only if item n+1 is allocated
by the drawn sample.

18

6 Beyond Additive or Computationally Bounded Bidders

6.1 Budget-Additive Bidders

We have already remarked in Section 1.3 that when the bidder valuations have combinatorial struc-
ture, it becomes much easier to embed computationally hard problems into the optimal mechanism
design problem. In this spirit, Dobzinski et al. [13] show that optimal mechanism design for OXS
bidders is NP-hard. While we won’t define OXS valuations, we illustrate the richness in their struc-
ture by recalling that in [13] the items are taken to be edges of a graph G = (V,E), and there is a
single bidder whose valuation is drawn from a distribution that includes in its support the following
valuation:

f(E′) = max

{

|A|
A ⊆ E′, every connected component of
G′ = (V,A) is either acyclic or unicyclic

}

,∀E′ ⊆ E.

While the valuations used in [13] are quite rich, we notice here that the techniques of [13] can be
used to establish hardness of optimal mechanism design for a bidder with very mild combinatorial
structure, namely budget-additivity. Indeed, consider the problem of selling a set N = {1, . . . , n}
of items to a budget-additive bidder whose value xi for each item is some deterministically known
integer, but whose budget is only probabilistically known. In particular, suppose that, with prob-
ability (1 − ǫ), the bidder is additive, in which case her value va(S) for each subset S is

∑

i∈S xi.
With probability ǫ, however, she has a positive integer budget B: she values each subset S at
vb(S) = min{

∑

i∈S xi, B}. That is, when she has a budget, she receives at most B utility from any
subset. We claim that the optimal mechanism satisfies:

Claim 1. Suppose ǫ < 1
1+

∑
xi
. Then every optimal individually rational and Bayesian incentive

compatible direct mechanism for the budget-additive bidder described above has the following form:

• If the bidder is unbudgeted, she receives all items and is charged
∑

i∈N xi.

• If the bidder is budgeted, she receives a probability distribution over the subsets T of items
such that

∑

i∈T xi is as large a value as possible without exceeding B. She is charged that
value.

This claim follows from a lemma of [13], showing that if the bidder has no budget she must
receive her value maximizing bundle, while if she is budgeted she must receive some bundle T
maximizing vb(T)− (1− ǫ)va(T). Determining the optimal direct mechanism is clearly hard in this
context, as it is NP-hard to compute a subset T with the largest value that does not exceed B.
Using the same arguments as in Section 2 we can extend this lower bound to all mechanisms, by
noticing that any sample from the allocation to the budgeted bidder answers whether there exists
some T such that

∑

i∈T xi = B.

Theorem 2. There is a polynomial-time Karp reduction from the subset-sum problem to the optimal
mechanism design problem of selling multiple items to a single budget-additive quasi-linear bidder
whose values for the items are known rational numbers, and whose budget is equal to some finite
rational value or +∞ with rational probabilities.

6.2 Further Discussion: Powerful Bidders

6.2.1 NP Power

We observe that if the budget-additive bidder described in the previous section has the ability to
solve NP-hard problems, then there is a simple indirect mechanism which implements the above

19

allocation rule: The seller offers each set S at price
∑

i∈S xi, and leaves the computation of the
set T to the bidder. (As remarked in Section 2 we can use small rewards to guarantee that the
same allocation rule is implemented.) Such a mechanism is intuitively unsatisfactory, however, and
violates our requirement (see Section 1.1) that a bidder be able to compute her strategy efficiently.
While an optimal indirect mechanism is easy for the seller to construct and to implement, it
is intractable for the bidder to determine her optimal strategy in such a mechanism. Conversely,
implementing the direct mechanism requires the seller to solve a subset sum instance. Thus, shifting
from a direct to an indirect mechanism allows for a shift of computational burden from the seller
to the bidder.

6.2.2 PSPACE and Beyond

Indeed, we can generalize this observation to show that optimal mechanism design for a polynomial-
time seller becomes much easier if the bidder is quasi-linear, computationally unbounded, and has a
known finite maximum possible valuation for an allocation. The intuition is that, if some canonical
optimal direct mechanism is computable and implementable in polynomial space, then we can
construct an extensive form indirect mechanism whereby the bidder first declares her type and
then convinces the seller, via an interactive proof with completeness 1 and low soundness, what
the allocation and price would be for her type in the canonical optimal direct revelation BIC and
IR mechanism.16 In the event of a failure, the bidder is charged a large fine, significantly greater
than her maximum possible valuation of any subset. The proof that this protocol achieves, in a
subgame perfect equilbrium, expected revenue equal to the optimal direct BIC and IR revenue
follows from IP = PSPACE [20]. In particular, we note that the canonical solution of the mechanism
design instances in the hardness proof of Section 5 can indeed be found in PSPACE, and thus we can
construct an easily-implementable extensive form game which achieves optimal revenue in subgame
perfect equilibrium. Reaching this equilibrium, however, requires the bidder to have PSPACE power.

Indeed, if there are two or more computationally-unbounded bidders, then we can replace the
assumption that the optimal direct mechanism is computable in PSPACE with the even weaker
assumption that it is computable in nondeterministic exponential time, using the result that MIP =
NEXP [3] to achieve the optimal revenue in a perfect Bayesian equilibrium. The intuition is that our
mechanism now asks all players to (simultaneously) declare their type. Two players are selected
and required to declare the allocation and price which the canonical optimal direct mechanism
would implement given this type profile, and they then perform a multiparty interactive proof to
convince the seller of the correctness of the named allocation and price.

Since the optimal allocation might be randomized and the prices might require exponentially
many bits to specify, we must modify the above outline. The rough ideas are the following. First,
a price of exponential bit complexity but magnitude bounded by a given value can be obtained
as the expectation of a distribution that can be sampled with polynomially many random bits in
expectation. Now, after the bidders declare their types, the seller reveals a short random seed
r, and requires the bidders to draw the prices and allocation from the appropriate distribution,
using r as a seed. The bidders must prove the actual deterministic allocation and prices that
the optimal direct mechanism would have obtained when given seed r to sample exactly from the
optimal distribution. If r does not have sufficient bits to determine the sample, then the bidders
prove interactively that additional bits are needed, and further random bits are appended to r. If
the bidders ever fail in their proof, the mechanism terminates and they are charged a large fine.

16We have fixed a canonical direct mechanism to avoid complications arising when the optimal mechanism is not
unique.

20

Regardless of whether or not the players ever attempt to prove an incorrect statement, the protocol
terminates in expected polynomial time.

We omit a formal proof of the above observations. We also note that we do not present the
mechanisms of this section as practical. But we want to point out that the complexity of the
optimal mechanism design problem may become trivial if no computational assumptions are placed
on the bidders.

7 Conclusion

Prior to this work, the complexity of computing revenue-optimal mechanisms was poorly understood
despite considerable effort in both economics and algorithmic game theory. Exact solutions were
known only in restricted classes of instances or for constrained input models, yet complexity lower
bounds were known only for instances which injected rich combinatorial structure on the valuations
or the allowable allocations. In this paper, we provide compelling lower bounds for one of the
simplest settings: a single additive bidder with independent values for the items. Our lower bound
applies to the most general computational model, placing no restriction on the type or encoding of
the mechanism, except that its outcomes be efficiently samplable. The proof technique is in itself
interesting, developing relaxations to a folklore LP for revenue-optimization to narrow into a family
of instances that are rich enough to encode #P-hard problems, yet are amenable to analysis.

We note that our results do not preclude the existence of a fully polynomial-time approximation
scheme (FPTAS) for the mechanism design problem. Indeed, this remains an open question even
in the case of a single additive bidder.

References

[1] S. Alaei. Bayesian Combinatorial Auctions: Expanding Single Buyer Mechanisms to Many
Buyers. In the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2011.

[2] S. Alaei, H. Fu, N. Haghpanah, J. Hartline, and A. Malekian. Bayesian Optimal Auctions
via Multi- to Single-agent Reduction. In the 13th ACM Conference on Electronic Commerce
(EC), 2012.

[3] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has Two-Prover
Interactive Protocols. Computational Complexity, 1:3–40, 1991.

[4] S. Bhattacharya, G. Goel, S. Gollapudi, and K. Munagala. Budget Constrained Auctions with
Heterogeneous Items. In the 42nd ACM Symposium on Theory of Computing (STOC), 2010.

[5] P. Briest. Uniform Budgets and the Envy-Free Pricing Problem. In the 35th International
Colloquium in Automata, Languages and Programming (ICALP), 2008.

[6] Y. Cai, C. Daskalakis, and S. M. Weinberg. An Algorithmic Characterization of Multi-
Dimensional Mechanisms. In the 44th Annual ACM Symposium on Theory of Computing
(STOC), 2012.

[7] Y. Cai, C. Daskalakis, and S. M. Weinberg. Optimal Multi-Dimensional Mechanism Design:
Reducing Revenue to Welfare Maximization. In the 53rd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), 2012.

21

[8] Y. Cai, C. Daskalakis, and S. M. Weinberg. Reducing Revenue to Welfare Maximization
: Approximation Algorithms and other Generalizations. In the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2013.

[9] S. Chawla, J. D. Hartline, and R. D. Kleinberg. Algorithmic Pricing via Virtual Valuations.
In the 8th ACM Conference on Electronic Commerce (EC), 2007.

[10] S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan. Multi-Parameter Mechanism Design and
Sequential Posted Pricing. In the 42nd ACM Symposium on Theory of Computing (STOC),
2010.

[11] C. Daskalakis, A. Deckelbaum, and C. Tzamos. Optimal Pricing is Hard. In the 8th Workshop
on Internet & Network Economics (WINE), 2012.

[12] C. Daskalakis and S. M. Weinberg. Symmetries and Optimal Multi-Dimensional Mechanism
Design. In the 13th ACM Conference on Electronic Commerce (EC), 2012.

[13] S. Dobzinski, H. Fu, and R. D. Kleinberg. Optimal Auctions with Correlated Bidders are Easy.
In the 43rd ACM Symposium on Theory of Computing (STOC), 2011.

[14] S. Hart and N. Nisan. Approximate Revenue Maximization with Multiple Items. In the 13th
ACM Conference on Electronic Commerce (EC), 2012.

[15] R. Kleinberg and S. M. Weinberg. Matroid Prophet Inequalities. In the 44th Annual ACM
Symposium on Theory of Computing (STOC), 2012.

[16] A. M. Manelli and D. R. Vincent. Multidimensional Mechanism Design: Revenue Maximization
and the Multiple-Good Monopoly. Journal of Economic Theory, 137(1):153–185, 2007.

[17] R. B. Myerson. Optimal Auction Design. Mathematics of Operations Research, 6(1):58–73,
1981.

[18] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, editors. Algorithmic Game Theory.
Cambridge University Press, 2007.

[19] C. H. Papadimitriou and G. Pierrakos. On Optimal Single-Item Auctions. In the 43rd ACM
Symposium on Theory of Computing (STOC), 2011.

[20] A. Shamir. IP = PSPACE. J. ACM, 39(4):869–877, Oct. 1992.

[21] M. Sipser. Introduction to the Theory of Computation: Second Edition. PWS Pub., Boston, 2
edition, 2006.

22

	1 Introduction
	1.1 The Optimal Mechanism Design Problem
	1.2 Techniques
	1.3 Related Work
	1.4 Further Results and Discussion

	2 Preliminaries
	2.1 Our Proof Plan

	3 A Linear Programming Approach
	3.1 Mechanism Design as a Linear Program
	3.2 A Relaxed Linear Program
	3.3 The Dual of the Relaxed Program, and its Min-Cost Flow Interpretation

	4 Characterizing the Linear Programming Solutions
	4.1 The Canonical Solution to LP3
	4.2 From LP3 to LP2 Solutions
	4.3 From LP2 to LP1 Solutions
	4.4 Putting it All Together

	5 Proof of Theorem 1: Hardness Of Mechanism Design
	5.1 Hardness of LexRank
	5.2 Hardness of Mechanism Design: Reduction from LexRank

	6 Beyond Additive or Computationally Bounded Bidders
	6.1 Budget-Additive Bidders
	6.2 Further Discussion: Powerful Bidders
	6.2.1 NP Power
	6.2.2 PSPACE and Beyond

	7 Conclusion

